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DISPERSION OF NONLINEAR WAVES IN A ROD* 

V.L. BERDICHEVSKII 

Equations fromthelineartheory oftransverseoscillations ofarodhave solutions of the 
form @,0= hi- 61t if the wave number h and frequency o are linked by the dispersion rela- 
tion f (h,w) = 0. In the present paper, a nonlinear generalization of such solutions and a 
corresponding dispersion relation is constructed for plane oscillations of a inextensible rod. 

The basic nonlinear effects, like previously studied cases /l/, are seen in the fact that the 
harmonic oscillation pl is transformed into an oscillation of the form +(e),tl =tl(E,t) where 
q(0) is a periodic function of 0, further in the dispersion relation a dependence on the 
amplitude of the oscillations arises while the derivatives BE and-01 serve asthewavenumber 

and frequencies. The nature of the problem is related to the introduction of a particular 

"effective" rod characterizing slow mean motion on which rapid oscillations with wave number 

f_$ and frequency Br are superimposed. The energy of the effective rod is computed and equa- 

tions are constructed that describe its evolution. The dispersion relation arises as an 

equilibrium condition imposed on the effective rod. 
The main purpose of the present paper is to explain whether the Whitham method in the 

theory of nonlinear waves /l/ is a particular case of the general method of studying function- 

als that depend upon a small parameter proposed in /2/. A positive answer tothis questionis 

given. 

1. Formulation of problem. We consider in a Cartesian coordinate system zl,z' an 

infinite rodthat coincides with the axis II in its undeformed state. The axes zl, .+are the 

axesofinertia of the cross-section. The length of an arc along the rod is denoted by E. The 

motionofthe rod is described by the displacements ui (5, t), i = I, 3. The rod is assumed to be 

incompressible: 

1 i- 
Q + ‘;5- “,g*E - 0 (1.1) 

Differentiation with respect to 5 and t are denoted by subscripts "j"and"t".TheLagrangian 

ofthe rod referred to half the area of the cross-section ) SI and the Young's modulus E has 

the form 

.z = X'll&'life - pE-'u~uit' E=(r/js()'- (1.2) 

Here I is the moment of inertia of the cross-section and p is the volume density of the 

mass. No constraints are imposed on the amplitude of the displacements. The oscillations of 

the rodare described by the nonlinear theory, and the nonlinear effects occur only in equation 
(1.1). 

We will find solutions of the form u'=f*(e,E,t), where f' are periodic (with minimal period 

2n) functions of e,e is a function of 5 and t, and the characteristic scales I. and T of 

variationofthe functions f'(fj,E,t) (at fixed e) and BE,81 with respect to 5 and t are much 

grcaterthanthe characteristic scales 2,~ of variation of the function 0(&t) with reSpeCt to 

E, and t. It is assumed that the functions f' have periodic first derivatives with respectto 

0: lf+,'l:, = O([Al:, is the difference in the values of the function A (0) and B = n and H = -R 

(while the subscript (I 0 II denotes differentiation with respect to 0). 

We let (.) denote the operation of averaging with respect to 8. 

ln 
<A (8)> -7 'Ln 

s 
A(8)dH 

--n 

We introduce an effective rod whose axis is determinded by the radius-vector with com- 

ponents ~'(5, t) = <fi(8, 5, t)>. Then the components of the displacement vector of the rod may be 
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represented in the form 

ui = vi 6, t) + $' (e, 5, t), e = 8 (5, t) (1.3) 

The functions $i satisfy the constraints 

<$I> = 0 (1.4). 

The oscillations (1.3) impose rapid micro-oscillations II'@, E, t) on the mean slow 

oscillation vi&, t) . It is necessary to find the rapidly varying part of the oscillations # 

(to a first approximation in the small parameters a/L, l/L, and T/T, with a the amplitude of the 
oscillations) and to construct equations for the mean characteristics of the oscillations u'(E, 

t) and 0 (E, t). The phase 6 (E, t) may be considered as an additional internal degree of 

freedom of the effective rod. 

Remark lo. The Lagrangian (1.2) also describes the free oscillations of a plate, such 

that the displacements depend only on the coordinates 5 and t. In (1.2), then, we must set 

x= h/l/n and replace E by +/(I -v), where h is the thickness of the plate; p, shear modulus; 

and Y, the Poisson coefficient. 

Z". The inextensibility condition imposed on the rod is adopted to simplify the discus- 

sion; theentire studymaybe repeatednearlywordforwordforthecaseofstretchable rodsifitis 

assumed that the stretching is small by comparison with the unit of length. The assumption 

of inextensibility in the description of transverse oscillations with small amplitudes is of 

no importance, since the transverse and longitudinal oscillations are independent. Inthe case 

of high amplitudes, the error in the inextensibility condition is the smaller, the higherthe 

oscillation amplitude. The dispersion relation in the intermediate case has recently been 

constructed /3/. 

2. Method of solution. 
w depends upon vi and 8. 

We establish functions v'(E, t) and tl(E, t) and find out how 

The problem contains small parameters 1lL and dT, so that it is 

natural to apply the variational-asymptotic method /2/. In accordance with the general tech- 

nique, we will substitute (1.3) in (1.2) and retain only principal terms with respect to $ 

and the principal cross terms. We obtain the Lagrangian I&,, with 

(A~)== (x*eeag&~'ree- pE-letQqie), X= iEe, (2.1) 
By (1.1) the functions @ satisfy the constraint 

(1 f vlE + eE*lo)a -6 (uz5 + ee*'2e)2= 1 (2.2) 

The computation of $ reduces tc finding the fixed points of the functional (2.1) on a 

set of functions that satisfy the conditions 

[~]:z=o, [9$]Fn= 0 (2.3) 

and the constraints (1.4) and (2.2). In this case y*, eE and 0, are considered to be constant 
parameters. 

Let us assume that the problem has been solved. 

0 and the parameters v;, Elk, 8,. 

Then $i will be known as functions of 

An explicit relation $ from 5 and t arises because of the 

relation between 5 and t and the parameters vEi, 8,, 8,. Let us consider the rod action funct- 
ional in the functions (1.3), in which Qi is understood to refer to the solutionoftheproblem 

:2.1)- (2.31, (1.4). Then the action functional becomes a functional of the slowly varying 
functions vi and 8, and the corresponding Lagrangian 3is given, to a first approximation, 
by the formula x = <A),. where Ais considered with respect to the displacements (1.3) with 
known functions q(f), UC, 88, 0,). The unknown values tii and @ will become the fixed points of 
the averaging functional. Thus, the first step of the variational-asymptotic method entirely 
coincides with the Whitham method in this problem. 

Let us now transform the problem of determining $ to a more convenient form. By (2.21, 
there exists a function 'P (e), such that 

1 + uIE + eEqke = cos ‘P, vzg + ee+ze = sin 'p (2.4) 

This function has the meaning of the angle between the tangent to the deformed axis of 

the rod and the axis ~1. In place of *, we will find the function (p(8). The function II, 
is found from (2.4) using the already known function 

The periodicity condition on $ 
CP (0) . 

is equivalent to the following constraints on CP (0): 

~+v~E=(cos(P), vZ~=(sincp) (2.5) 

The periodicity condition $0' states that, according to (2.4), ]q]_% = 2ns where s is 
an integer. The case ]s ]> 1 is not possible, since here 2n will not be the minimal period 
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of 9'. The case [cp]_nX = -2n reduces to the case [v]f, = 2n by means of the substitution Us, $,a, 
'p-+ - %, -%- 'p. Thus 

[T]?~= 0 and [(~]?~=2n (2.6) 

After eliminating from (2.1) derivatives of $ using the relations in (2.4), we findthat 
the unknown function ~(8) is a fixed point of the functional 

(A,) = (x2982- 2aU + vl~)coscp + vaesin cpl- 2a(l + v,)> (2.7) 

a=#/E, c=et/e&, V" = VIE + +v& 

under the constraints (2.5), (2.6). Here c is the phase velocity (a has the meaning of the 
square of the dimensionless phase velocity), and y* is a measure of the tension on the effect- 
ive rod. 

3. Computing the function q(O). Let us depart from the constraints (2.5), adding 
to the functional the expression 

2ah (cos q - 1 - v,~) + 2ap (sin 'p - v,~) 

where hand pare Lagrangian multipliers. In place of the two parameters h and k, it is more 
convenicnttouse the quantities m and cp,, which are determined by the relations 

m2 = a [(l + vlk + h)a + (vg + p)Y’d 
coscp, =a(1 + vim + h)lm2, sincp, =a(%~ + p)/ma 

We also introduce the angle of "mean" inclination 'p. by means of the equalities 
.- 

1+1~=YltZ~~cos~~, L~2~=~l+22yvsincp, 

Then the functional (2.7) may be rewritten in the form 

(ho) = (x2v$ + 2ma cosq) - 2m2v/1+ cos (cp* - cp,) + 2ay, (F= w - cp*) (3.1) 

We now pass from the unknown quantities ~,h, ~1 to the quantities $,m, 'y*. The fixedpoints 
with respectto Q are easily found: 

CP*=(P~+(~ or nc) (3.2) 

Here it is taken into account that displacements along 'p* by the quantity 2ns (with S an 
integer) willnot be substantial. 

In place of Y,,, it is convenient to introduce a new mean tension measure 9 determined by 
the equalities 

Y,__V+f:,z' ~--lIf~l+ 
(3.3) 

with the plus sign in (3.3) used if 'p* = 'pU and the minus sign if 'p* = qD i- n. The quantity 

Yo varies over the range [-_1,01, andthecorrespondingvaluesof 7 lieinthe segment I-2, 01. 
Finding (p and ,n reduces to computing the fixed points of the functional 

(A,) = (x*i$ + 2m2(cos (p - 1) + 2 (a - m2) 7 + a7’) (3.4) 

The fixed points satisfy the equations 

x"i& _t mz sin$=O (3.5) 

~+I:~=-= or 3~. [+.J12,=0, (coscp-1I)=y (3.6) 

If q(O) is a fixed point then *ij(O + const) f 2~~s (s is an integer) is also a fixed 
point. The corresponding arbitrariness is of no importance when determining the deformed 
state. Consequently, it may be assumed that Iq(--n) I< 22~. Thus from the phase pictureofthe 
equation (3.5) it is clear that the point F(O) always belongs to the solution. Also using 
the fact that ve# 0 if (p = 0, we find the additional constraints 

'P(O)=O. i&(O)<0 (3.7) 

The "physical pendulum" equation (3.5) has (taking into account (3.7)) a family of solu- 
tions that depend upon the parameter k /4/: 

sin%=-ksn(-$-,k), k<l (3.8) 

sin+= - sn (-,+), k>l 

sinGz-th(z), kzl 
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Let us consider the cases (3.8) separately. 

Case k<l. From the phase picture of equation (3.51, it is clear that the case [q]_,n = 

0 is realized. The form of the oscillations is found from (2.4): 

(3.9) 

The additive constant in (3.9) is determined from the constraint (1.4) and is insignif- 
icant henceforth. 

If v*e = 0, cos 'p* =1 the oscillations have the form (a is the amplitude) 

At low k, the bar in the deformed state has the form of a sinusoidal curve. As k in- 
creases, the shape of the bar increasingly deviates from a sinusoidal curve. When k = i/f/2, 
there arise, by (3.8), points at which the tangent to the bar is perpendicular to the effect- 
ive bar axis @=n/21 and when k> 1/f/2, the projection of the bar on the effective axis is 
no longer unique, further at values of k close to unity the curve crosses itself. 

Conditions (3.6) impose definite constraints on the parameters m,x and k. The con- 
straints are obtained more conveniently from the stationarity condition imposed on the func- 
tional (3.4) relative to the amplitude parameter k (as has been previously suggested by 
Whitham /l/, rather than from (3.6); in our problem we also required a stationarity condition 
with respect to m. 

Letus compute the functional (3.4). The fixed points (3.4) satisfy the equation 

xzij~S f 2m2(1 - cos Tj) = xa?jo;,a + 4m2sina+ = const 

The constant in (3.11) is taken in the form 4make. Then 

+.-+ kz - sinas 

Let us rewrite (3.4) in the form 

(3.11) 

(3.12) 

(ho) =$h%@- 4maka+2(a-mm2)y+a~P (3.13) 

The integral in (3.13) is taken over the range of variation of iJfor the entire period, 
and the quantity & is determined by (3.12). To compute the integral in (3.131, we make the 
substitution @(6)+x (8), sin i&2 = -k SD (x, k). The quantity x varies in the range Ixl<K(k). 
We find 

where E and Kare complete elliptic integrals. Thus 

(A+* (E-(I-kk’)K) -4maka+2(u-mmS)~+~~ (3.14) 

The fixed points for the functional (3.14) with respect to m and k satisfy the equations 

m =GK(k)x, & [E(k) - (I- k*) K (k)] - 2k’ = T (3.151 

Eliminating m from (3.15) leads to a relation between the amplitude parameter k and the 
tensile measure of the effective rod f: 

2 (E (k) K-’ (k) - 1) = 7 (3.16) 

The function 2 (EK-’ -1) decreases monotonically from 0 down to -2at values of k #at 
increase from 0 to 1. The quantity F varies, when O< k,< l/l/z in the range from Oto y* = 
-0.543. 

Because of the one-to-one relation between the amplitude parameter k and F, we may con- 
sider y as a measure of the amplitude of the oscillations. 
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Fig.1 

The true amplitude a, refers to a new wavelength 1 = 2nl0,, as 

given by (3.10), by the equality 

all = V,klK (k) 

Replacing k by 7 from (3.16) in the latter equality,we arrive 

at a relation between the dimensionless amplitude and r, a rela- 

tion which is plotted in the accompanying figure by the brokenline. 

The maximal value of the dimensionless amplitude afl is reached 

at k = 0.83, i; = -0.79, and is equal to 0.2. 

Case k>l. From the phase picture of equation (3.5), it 

is clear that when k>l , the case [cp]?%= 2n is realized. There- 

fore, the oscillations constitute a set of loops moving along the 

rod. As in the above, 

GLI) = ~E(~)--m~ka+2(cr_ma)y+a~ 

The fixed points with respect to mand k satisfy the equations 

After eliminating m, we obtain a relation between k and 7: 

2ka[E(+)K-l(f)--]=T 

(3.17) 

(3.18) 

The left side of (3.18) increases monotonically from -2to -1 as k increases from 1 to 

00. 

Case k =i. Such oscillations do not satisfy the periodicity conditions at any values 

of m. Therefore, when considering these oscillations the statement of the problem must be 

altered somewhat. We set 

v'=U, --<e<+=, e=e& + I&t, BP, et = const 

and consider the function $ in (1.3) to be particular, not necessarily periodic functions of 

8. Repeating the arguments presented above in our determination of q=cp word for word, 

we obtain the functional (3.4) with m2 = -a. Therefore, we have oscillations determined by 

the last relation in (3.8) with the form of the oscillations 

g,=ach-aG, a= 2a-'I& (3.19) 

The angle ?j? varies as 8 increases from --oo to +m in the range [0,&c]. Motion of an 

isolated loop (soliton) along the rod corresponds to the solution. The speed of the soli- 

ton c and the amplitude a are related, by (3.19) by the formula 

ac=2dEl/pISI 

Note that unlike waves on a water surface /l/, the speed of the soliton is inversely 

proportional to the amplitude. 

4. Effective Lagrangians. The value (A,,) in the fixed points is given by the 

functions v,a and x. We denote F(y, a, x). In the case of average motion, the Lagrangian 

(whichisobtained as a result of substituting (1.3) in (1.2), discarding small terms, and 

averagingwiththe respect to 8) is related to F(y,a,x)by means of the formula 

b =F@,a,x) + Tl%&ui~ - pE%&, (4.11 

The function Fisdetermined by the expressions 

k<i:F=2xa($K(k))a(y+2ka)+aai;a+2a~ (4.2) 

(4.3) 

Here it is assumed that in (4.2), k is a function of 7 and determined from equation (3.16), 

while in (4.3), it is determined from equation (3.17). 

The slowly varying functions 0*(&t) and 8(&t) satisfy the Euler equations for the 

Lagrangian (4.1): 
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(4.4) 

5. Free oscillations and the dispersion equation. Oscillations such that T, a, 
x are constant satisfy the equations (4.4). If the axis 7 is subjected to elongation in 

such a way that the mean energy P has a minimum for this elongation, the corresponding oscil- 
lations may naturally be referred to as free oscillations. By (3.17), the free oscillations 
are given by 

aF = mz - a or a = m2/(1 + ‘i;) (5.1) 

Since a > 0, m2 > 0, the free oscillations will occur only when r> -1, whichispossible 
when k(l. 

If the relation m (k, x) is substituted in (5.1) and if k is expressed in terms of 7, we 
obtain a dispersion equation, i.e., a relation between a, x and 7. From (5.1) and (3.151, 
we have 

a=A(y)xl, A(y)= &- (+W,) 

Here it is understood that k is expressed in terms of 7, as given 
The case 7 +O corresponds to waves of infinitely small amplitude. As 
0, 2n-'K + I, and the dispersion equation (5.2) turns into the classical 
theory a = x1. 

(5.2) 

in equation (3.16). 
F-+0, we have k + 
relation of the linear 

Let us consider corrections of the corresponding infinitesimal order. At low 7 (con- 
sequently, low k), the equation (3.16) assumes the form 

?(+k2=0 (5.3) 

Consequently 
A 69 z 1 - v,y 

(5.4) 

Since F<O, the phase velocity computed in light of nonlinearity is greater than the 
phase velocity computed in the linear theory. It is clear from (5.2) that this assertion is 
valid at finite 7 as well. The relation between A and 7 is depicted in the Fig.1 by a solid 
line. 

The coefficient A (7) increases as 7 varies from 0 to y* roughly by a factor of 3. As 
T_,-1+O,A(~)-++m. 

Let us find F(T,a,x) at low f. For this purpose, we must also take into account the 
next term in (5.3). We have ka = -7 - l~,jP, and from (4.2) we obtain 

F=(a -+xP)P+2(a-x%);i; (5.5) 

It turns out that the expression for (5.5) may be used not only at low 7. Tabulating 
2ne1K (k)(2ka +f) as a function of 7 shows that it may be approximated by the expression rlri? - 
7; in the range of greatest interest y* <<f GO, the error will be at most 3.2%. There- 

fore formula (5.5) may be applied over the entire range v*<r GO. 

The author would like to express his appreciation to A. Yu. Belyaev for having pointed 
out a number of mistakes in the original version of the paper. 
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